

V. 01/25

DOCUMENTO TECNICO: SEGMENTI DEI PISTONI

(Codice Doganale 84099100) - Freccia FR10

I segmenti dei pistoni (fasce elastiche) garantiscono la sigillatura tra pistone e cilindro, controllano il consumo di olio e trasferiscono calore. Inseriti in apposite cave del pistone, devono permettere espansione termica pur mantenendo tenuta e funzionalità ad alte pressioni e temperature.

Si distinguono in:

1. Tipologie SEGMENTI

1.1 Compressione (top ring):

- Sezione rettangolare o trapezoidale; prima fascia per tenuta gas.
- Applicazioni: Tutti i motori endotermici

1.2 Raschiaolio:

- A gradino o feritoie, elimina l'olio in eccesso.
- Applicazioni: Motori a 4 tempi

1.3 Oil control (multicomponente):

- Guide + molla espandente per olio fine.

2. Composizione Costruttiva

2.1 Materiali

- Ghisa grigia o sferoidale: buona lubrificazione, temperatura elevata.
- Acciaio (es. 304H): alta resistenza, coefficiente elastico elevato.
- Ghisa duttile: compromesso migliore fra durezza e tenuta.
- Rivestimenti: nitrurazione, moly-plasma o PTFE per ridurre attrito.

FRECCIA INTERNATIONAL srl - ENGINE PARTS

V. 01/25

2.2 Trattamenti Speciali

- Tempra superficiale + rivestimenti antiusura.
- Rettifica fine per Ra ≤ 0.4 μm.
- Controlli NDT su tagli e superfici.
- Equilibratura elastica e verifica tensione.

3. Dati Tecnici e Calcoli

3.1 Parametri Tecnici Tipici

Parametro	Valore Tipico	
Spessore fascia	0,8–1,2 mm	
Gioco di montaggio	0,02-0,05 mm	
Elasticità (modulo)	Acciaio ≈ 210 GPa	
Resistenza all'usura	-40 °C ÷ +900 °C	
Resistenza ciclica	Acciaio > Ghisa	
Temperatura esercizio	Fino a 350 °C (ghisa), > 400 °C (acciaio)	

Forza elastica:

$$F_e = k \cdot \Delta d$$

(k = modulo elastico → tenuta radiale)

Tenuta gas dinamica:

$$F_{
m tot} = F_e + P_c \cdot A$$

 $(P_x = pressione combustione, A = sezione ring)$

V. 01/25

3.2 Problemi Comuni

Problema	Causa Probabile	Soluzione
Incollamento (stuck ring)	Depositi e calo elasticità	Pulizia, sostituzione kit, controllo cilindro
Usura eccessiva	Attriti eccessivi o finitura errata	Rettifica/piston overhaul, rivestimenti
Trafilamento olio	Raschiaolio inefficiente	Sostituzione multi placca o raschiaolio
Deformazione termica	Surriscaldamento	Verifica cilindri, qualità olio e raffreddamento

4. Manutenzione e Sostituzione

Una corretta installazione e ispezioni periodiche prevengono usura precoce e danni motore.

4.1 Operazioni consigliate:

- Ispezioni consigliate ogni 60 000 km o in overhaul motore
- Controllare gioco, usura spessore, rotondità
- Sostituire se spessore < 0,8 mm o deformazioni > 0,05 mm
- Revisionare cilindri se segmenti si incollano spesso

5. Avvertenze Generali

- L'installazione deve essere eseguita solo da personale qualificato.
- Non modificare o alterare il componente in alcun modo.
- Verificare che il prodotto non presenti danni visibili (graffi, deformazioni, impurità).
- Assicurarsi che il codice e le specifiche corrispondano a quelle richieste per l'applicazione.

FRECCIA INTERNATIONAL srl - ENGINE PARTS

V. 01/25

- Assicurarsi che il prodotto venga montato in modo corretto secondo le specifiche del costruttore.
- Il produttore non è responsabile per danni derivanti da un utilizzo improprio o da un montaggio non conforme alle istruzioni.

6. Conclusione

Le fasce elastiche sono componenti vitali per la tenuta di pressione, controllo olio e dissipazione termica nei motori. La scelta del materiale (acciaio o ghisa), la tolleranza di montaggio e i trattamenti superficiali determinano prestazioni, durata e affidabilità del sistema pistone/cilindro. Una corretta manutenzione e sostituzione tempestiva, attenendosi alle specifiche descritte, assicura efficienza di combustione, ridotti consumi e maggiore longevità del motore.