V. 01/25

DOCUMENTO TECNICO: POMPE ACQUA

(Codice Doganale 84133080) - Freccia WP

Le pompe acqua (o pompe di raffreddamento) sono componenti fondamentali nei motori a combustione interna, responsabili della circolazione del liquido refrigerante attraverso il circuito di raffreddamento. La loro efficienza è determinante per mantenere la temperatura ottimale di esercizio, prevenendo surriscaldamenti e deformazioni meccaniche.

Si distinguono in:

1. Tipologie Pompe Acqua

1.1 Pompa Acqua Meccanica:

- Azionate tramite cinghia o catena dal motore.
- Applicazioni: Motori termici tradizionali.

1.2 Pompa Acqua Elettrica:

- Indipendenti dal motore, regolate da centralina (ECU).
- Applicazioni: Sistemi a start-stop, ibridi, Euro 6+.

1.3 Pompa Acqua Combinata (duale):

- Circuito principale + secondario (turbo, batteria, EGR ecc.).
- Applicazioni: Veicoli moderni con gestione termica attiva.

1.4 Pompa Acqua a portata variabile:

- Pale a geometria regolabile o rotore a frizione controllata.
- Applicazioni: Efficienza termica migliorata.

FRECCIA INTERNATIONAL srl - ENGINE PARTS

2. Composizione Costruttiva

2.1 Componenti Principali

Componente	Materiale	Funzione
Corpo pompa	Alluminio pressofuso / Ghisa	Struttura, canali refrigerante
Girante	Tecnopolimero, acciaio inox, ottone	Movimento fluido, portata
Albero rotore	Acciaio C45 temprato	Trasmissione movimento
Cuscinetti	A sfere o rulli	Supporto rotazione
Guarnizioni	FKM / NBR	Tenuta contro perdite
Tenuta meccanica	Ceramica / Carbonio / Viton	Separazione fluido e parte motrice
Guarnizione corpo	Gomma/FKM o metallo composito	Tenuta tra corpo e motore

2.2 Trattamenti Speciali

- Anodizzazione corpo in alluminio (resistenza alla corrosione.
- Passivazione giranti in acciaio inox.
- Equilibratura dinamica della girante.
- Test di tenuta fino a 1,5× pressione nominale.
- Rettifica sedi tenuta meccanica (Ra ≤ 0,2 μm).

3. Dati Tecnici e Calcoli

3.1 Parametri Tecnici Tipici

Grandezza	Formula	Unità
Portata volumetrica Q	$Q = A \cdot v = rac{\pi \cdot D^2}{4} \cdot v$	m³/h
Prevalenza (H)	$H=rac{p}{ ho\cdot g}$	m
Potenza idraulica P	$P = \rho \cdot g \cdot Q \cdot H$	W
Efficienza η	$\eta = rac{P_{idraulica}}{P_{motore}}$	-

FRECCIA INTERNATIONAL srl - ENGINE PARTS

DOCUMENTAZIONE TECNICA 84133080

V. 01/25

Parametro	Valore Tipico	
Portata	1.200-1.800 l/h	
Pressione max	1,5 bar	
Temperatura esercizio	-30 ÷ +120 °C	
Tipo girante	7 pale in polimero rinforzato	
Peso	1,2 kg	
Alimentazione (se elettrica)	12 V DC	
Cicli di vita	≥ 10.000 h / 250.000 km	

3.2 Problemi Comuni

Problema	Causa Probabile	Soluzione
Perdita liquido	Tenuta meccanica usurata	Sostituzione completa della pompa
Surriscaldamento motore	Portata ridotta / girante danneggiata	Verifica girante / flusso circuito
Rumorosità	Cuscinetti usurati / disassamento	Sostituzione albero o unità completa
Vibrazioni	Girante sbilanciata / gioco eccessivo	Controllo equilibratura

4. Manutenzione e Sostituzione

Una corretta installazione e ispezioni periodiche prevengono usura precoce e danni motore.

4.1 Operazioni consigliate:

- Non avviare il motore senza liquido refrigerante.
- Evitare utilizzo di sigillanti inadatti o eccesso di coppia sulle viti.
- Usare esclusivamente refrigeranti conformi allo standard OEM (G12, G13, etc.).

FRECCIA INTERNATIONAL srl - ENGINE PARTS

DOCUMENTAZIONE TECNICA 84133080

V. 01/25

- Durante il montaggio, verificare sempre lo stato delle guarnizioni e del piano motore.

5. Avvertenze Generali

- L'installazione deve essere eseguita solo da personale qualificato.
- Non modificare o alterare il componente in alcun modo.
- Verificare che il prodotto non presenti danni visibili (graffi, deformazioni, impurità).
- Assicurarsi che il codice e le specifiche corrispondano a quelle richieste per l'applicazione.
- Assicurarsi che il prodotto venga montato in modo corretto secondo le specifiche del costruttore.
- Il produttore non è responsabile per danni derivanti da un utilizzo improprio o da un montaggio non conforme alle istruzioni.

6. Conclusione

Le pompe acqua sono elementi fondamentali per la gestione termica del motore. La scelta di materiali resistenti alla corrosione, una progettazione efficiente della girante e il rispetto delle tolleranze di montaggio assicurano affidabilità, durata e sicurezza del sistema di raffreddamento. La manutenzione periodica e l'uso di liquidi refrigeranti idonei prevengono surriscaldamenti e prolungano la vita del propulsore.