V. 01/25

DOCUMENTO TECNICO: BOBINE DI ACCENSIONE (IGNITION COIL)

(Codice Doganale 85113000) – Freccia IC15-XXXX

Le bobine di accensione trasformano la tensione di batteria (12 V) in alta tensione (fino a 40.000 V) necessaria per innescare la scintilla all'interno della camera di combustione. Costituiscono l'elemento centrale del sistema di accensione nei motori a benzina e sono oggi gestite elettronicamente da centralina (ECU), con elevate esigenze di precisione e resistenza termica.

Si distinguono in:

1. Tipologie Bobina di Accensione

- 1.1 Bobina di Accensione Standard (a singola uscita):
 - Bobina unica per più cilindri + spinterogeno.
 - Applicazioni: Motori più datati.
- 1.2 Bobina di Accensione DIS (Dual Ignition System):
 - 1 bobina ogni 2 cilindri, gestita da ECU.
 - Applicazioni: Motori a 4–6 cilindri senza distributore.
- 1.3 Bobina di Accensione Pencil coil (cofano/candela):
 - Bobina integrata su ogni candela.
 - Applicazioni: Veicoli moderni, alta efficienza.
- 1.4 Bobina di Accensione Rail coil (a banco):
 - Unità multipla con 2–4 uscite.
 - Applicazioni: Motori compatti, a benzina turbo.

2. Composizione Costruttiva

2.1 Componenti Principali

Componente	Materiale	Funzione
Nucleo magnetico	Ferro dolce laminato	Concentratore di flusso magnetico
Avvolgimenti	Rame smaltato (alta isolazione)	Generazione tensione primario/secondario
Isolamento	Resine epossidiche / polimeri	Protezione termica e dielettrica
Connettore / attuatore	Plastica tecnica + contatti ottone	Collegamento con ECU / cablaggio
Corpo esterno	Nylon rinforzato / alluminio pressofuso	Contenimento e protezione vibrazioni

3. Dati Tecnici e Calcoli

3.1 Parametri Tecnici Tipici

Bobina come trasformatore:

$$V_2 = V_1 \cdot rac{N_2}{N_1}$$

Esempio: $V_1 = 12 \text{ V}, N_2/N_1 = 3000 \rightarrow V_2 = 36.000 \text{ V}$

Energia accumulata (ignizione capacitiva):

$$E=rac{1}{2}\cdot L\cdot I^2$$

DOCUMENTAZIONE TECNICA 85113000

V. 01/25

Parametro	Valore Tipico	
Tensione ingresso (primario)	12 V DC	
Tensione uscita (secondario)	30.000 – 40.000 V	
Resistenza primario	0,4 – 0,8 Ω	
Resistenza secondario	6 – 9 kΩ	
Energia per scintilla	40 – 60 mJ	
Tempo carica bobina	2 – 3 ms	
Classe temperatura	F (155 °C) o H (180 °C)	
Vita utile	> 100.000 km / 3.000 h	

3.2 Problemi Comuni

Problema	Causa Probabile	Soluzione
Mancanza di scintilla	Avvolgimento interrotto	Misura ohmica, sostituzione
Motore irregolare	Scarica insufficiente	Verifica segnale ECU, sostituzione bobina
Rottura isolamento	Sovratensioni, calore	Controllo visuale, sostituzione completa
Codice errore P035X ECU	Bobina malfunzionante	Verifica con oscilloscopio

4. Manutenzione e Sostituzione

Una corretta installazione e ispezioni periodiche prevengono usura precoce e danni motore.

4.1 Operazioni consigliate:

- Ispezione visiva: crepe, bruciature, umidità residua.
- Controllo resistenza primaria/secondaria con multimetro.

FRECCIA INTERNATIONAL srl - ENGINE PARTS

DOCUMENTAZIONE TECNICA 85113000

V. 01/25

- Sostituzione ogni 100.000–120.000 km (o a ogni cambio candele).
- Utilizzare solo componenti con resina incapsulante sigillata.
- Evitare pulizia con liquidi conduttivi o spray non specifici.

5. Avvertenze Generali

- L'installazione deve essere eseguita solo da personale qualificato.
- Non modificare o alterare il componente in alcun modo.
- Verificare che il prodotto non presenti danni visibili (graffi, deformazioni, impurità).
- Assicurarsi che il codice e le specifiche corrispondano a quelle richieste per l'applicazione.
- Assicurarsi che il prodotto venga montato in modo corretto secondo le specifiche del costruttore.
- Il produttore non è responsabile per danni derivanti da un utilizzo improprio o da un montaggio non conforme alle istruzioni.

6. Conclusione

Le bobine di accensione sono dispositivi ad alta precisione e sensibilità, fondamentali per garantire la corretta combustione nei motori a benzina. La scelta di materiali isolanti, l'affidabilità degli avvolgimenti e la compatibilità elettronica con l'ECU sono determinanti per prestazioni e durata. Una manutenzione corretta, abbinata a diagnosi periodiche, consente di prevenire irregolarità d'accensione e proteggere gli altri componenti del sistema di accensione.