

V. 01/25

DOCUMENTO TECNICO: ALBERO A CAMME

(Codice Doganale 84831095) - Freccia CM05-XXXX

Gli alberi a camme sono organi meccanici fondamentali nei motori a combustione interna. Regolano l'apertura e la chiusura delle valvole di aspirazione e scarico, influenzando direttamente le prestazioni, il consumo e l'affidabilità del motore. Questo documento descrive le tipologie principali, le caratteristiche costruttive, i parametri di calcolo, e le problematiche più comuni.

Si distinguono in:

1. Tipologie Alberi

1.1 Alberi a Camme Monopezzo in Acciaio:

- Composizione: Acciaio legato forgiato o ricavato da barra, con camme lavorate e temprate.
- Applicazioni: Motori a combustione interna ad alte prestazioni, OEM e racing.

1.2 Alberi a Camme Assemblati Tubolare:

- Composizione: Camme singole temprate montate su tubo strutturale o albero centrale.
- Applicazioni: Motori a combustione interna modulari o ad alto contenuto di leggerezza, anche ibridi.

1.3 Alberi a Camme Fusi in Ghisa:

- Composizione: Ghisa grigia o sferoidale lavorata.
- Applicazioni: Motori a combustione interna standard a ciclo Otto o Diesel, veicoli commerciali leggeri

2. Composizione Costruttiva

2.1 Componenti Principali

Componente	Materiale	Funzione
Corpo albero	es. 42CrMo4 (acciaio)	Supporto strutturale
Camme	es. 42CrMo4 temprato 58-60 HRC	Controllo valvole
Sedi supporto	es. Acciaio rettificato	Alloggiamento in testata
Spallamenti	Fresati	Controllo gioco assiale

2.2 Trattamenti Speciali

- Tempra/indurimento superficiale camme.
- Rettifica fine (Ra ≤ 0,4 μm).
- Nitrurazione opzionale per elevata resistenza a fatica.
- Controlli non distruttivi MT/UT su camme e sedi.

2.3 Composizione Chimica e Proprietà dei Materiali

Elemento (% p/p)	42CrMo4 (Acciaio)	Ghisa Grigia
С	es. 42CrMo4 (acciaio)	3,0–3,4
Si	es. 42CrMo4 temprato 58-60 HRC	1,8-2,8
Mn	es. Acciaio rettificato	0,6–0,9
Cr	Fresati	0,1 (max)
Мо	0,15–0,30	-
P + S (max)	0,035	0,12 (P) / 0,12 (S)

3. Dati Tecnici e Calcoli

3.1 Parametri Tecnici Tipici

Proprietà	42CrMo4 (Acciaio)	Ghisa Grigia
Resistenza a trazione (Rm)	≈ 900 MPa	250–300 MPa
Durezza max (tempra)	58-60 HRC	200–240 HB
Tenacità (KV, 20 °C)	≥ 35 J	≤ 10 J
Modul. elasticità (E)	210 GPa	110-140 GPa
Conducibilità termica	35–45 W/mK	50–55 W/mK

Parametro	Formula	Note
Velocità periferica V	$V = \frac{\pi Dn}{60}$	D = diametro camma (m); n = rpm
Accelerazione teorica camma a	$a=r\cdot\omega^2$	r =raggio base; $\omega=2\pi n/60$
Momento torcente camma T	$T = F \cdot r$	F = forza valvola
Tensione flessionale σ (albero)	$\sigma = rac{32M}{\pi d^3}$	M = momento flettente; d = diametro albero
Fatica (criterio Goodman) S_f	$rac{\sigma_a}{S_e} + rac{\sigma_m}{S_u} = 1$	Per dimensionamento a fatica

Esempio CM05-2121

D = 0,03 m | n = 3000 rpm \rightarrow V \approx 4,71 m/s r = 15 mm | $\omega \approx$ 314 rad/s \rightarrow a \approx 1,48 \times 10⁵ mm/s²

 $F \approx 800 \text{ N} \rightarrow T \approx 12 \text{ Nm}$

3.2 Problemi Comuni

Problema	Causa Probabile	Soluzione
Usura irregolare camme	Lubrificazione insufficiente	Verifica pressione olio, sost. filtro, olio OE

FRECCIA INTERNATIONAL srl - ENGINE PARTS

V. 01/25

Rottura camma	Sovraccarico/fatica termica	Analisi metallografica, sostituzione
Vibrazioni	Concentricità fuori toll.	Controllo sedi testata, rilavorazione

4. Manutenzione e Sostituzione

Una corretta installazione e ispezioni periodiche prevengono usura precoce e danni motore.

4.1 Procedura di Sostituzione (Motore Classico)

- Disconnettere batteria e centralina motore (ECU)
- Rimuovere il coperchio punterie, sensori e connettori presenti
- Portare il motore in Punto Morto Superiore (PMS) sul cilindro 1
- Rimuovere punterie, bilancieri o rullini (se applicabili)
- Allentare i supporti dell'albero a camme in sequenza incrociata, in più passaggi
- Estrarre delicatamente l'albero evitando urti o graffi
- Pulire accuratamente sedi supporti e zona punterie Controllare:

Concentricità sedi testata (≤ 0,010 mm)

Usura profilo camma con micrometro

Integrità spallamenti e sedi laterali

- Applicare olio motore o pasta di montaggio su camme, supporti e sedi
- Installare il nuovo albero a camme (cod. CM05-2121) rispettando l'orientamento
- Serraggio supporti: 22–25 Nm (seguire sequenza incrociata)
- Verificare allineamento fasatura e posizione sensori (se presenti)
- Effettuare regolazione gioco valvola con spessimetri (se richiesto)
- Rimontare tutti i componenti in ordine inverso
- Avviare il motore e mantenere al minimo per 5 min, verificando:

Pressione olio

Assenza di rumori anomali

Assenza di perdite

Note importanti

- -Non riutilizzare guarnizioni o paraoli deformati
- -Non serrare a secco: sempre utilizzare lubrificazione
- -Verificare i riferimenti di fasatura prima dell'avviamento
- -Dopo 500–1.000 km, consigliato controllo gioco valvole (dove previsto)

FRECCIA INTERNATIONAL srl - ENGINE PARTS

V. 01/25

5. Avvertenze Generali

- L'installazione deve essere eseguita solo da personale qualificato.
- Non modificare o alterare il componente in alcun modo.
- Verificare che il prodotto non presenti danni visibili (graffi, deformazioni, impurità).
- Assicurarsi che il codice e le specifiche corrispondano a quelle richieste per l'applicazione.
- Assicurarsi che il prodotto venga montato in modo corretto secondo le specifiche del costruttore.
- Il produttore non è responsabile per danni derivanti da un utilizzo improprio o da un montaggio non conforme alle istruzioni.

6. Conclusione

Gli alberi a camme sono componenti essenziali per il corretto funzionamento dei motori a combustione interna. La scelta del materiale, la precisione geometrica, i trattamenti superficiali e il rispetto delle tolleranze di assemblaggio sono determinanti per garantire affidabilità, efficienza e durata nel tempo.

Un'installazione eseguita a regola d'arte e una manutenzione periodica permettono di prevenire usura precoce, ridurre i rischi di guasti e mantenere elevate le prestazioni del sistema di distribuzione. Il rispetto delle specifiche tecniche e delle procedure di controllo è indispensabile per assicurare la piena funzionalità del componente in ogni tipo di applicazione motore.